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a b s t r a c t

Omnipresent online social media nowadays has a constantly growing influence on
business, politics, and society. Understanding these newer mechanisms of information
diffusion is very important for deciding campaign policies. Due to free interaction among
a large number of members, information diffusion on social media has various charac-
teristics similar to an epidemic. In this paper, we propose and analyze a mathematical
model to understand the phenomena of digital marketing with an epidemiological
approach considering some realistic interactions in a social network. We apply mean-
field approach as well as network analysis to investigate the phenomenon for both
homogeneous and heterogeneous models, and study the diffusion dynamics as well
as equilibrium states for both the cases. We explore the parameter space and design
strategies to run an advertisement campaign with substantial efficiency. Moreover,
we observe the phenomena of bistability, following which we estimate the necessary
conditions to make a campaign more sustainable while ensuring its viral spread.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this age of the Internet, the importance of social networks to spread a message, opinion or campaign is undeni-
able [1–3]. Devising strategies to exploit existing social networks to make a campaign fast spreading as well as sustainable
is becoming an area of growing interest among political campaigners and product marketing managers. Based on this
ideas, viral marketing (VM) is being adopted as a recent marketing strategy and a way of communication with customers,
which can potentially reach a large audience very fast [4–6]. VM is also known as Internet Word-of-mouth marketing, as it
encourages people to share information (product specifications, improvements, campaigns etc.) with their friends through
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email or other social media, and utilizes existing social networks [7]. This prompting is sometimes done by introduction
of some benefits (like, credit points, e-cash, extra discounts, cashback, promo codes etc.) to the existing customers, as a
reward for sharing information in their peer network.

VM campaigns have several benefits over traditional mass media campaigns, an important one being its ability
to reach particular customer groups, as, in many cases, friendship networks arise from common interests [8]. These
communications also have more impact and acceptability than third-party advertising among the potential customers,
as it comes with an endorsement and recommendation of a friend. Woerdl [9] has also highlighted fast and exponential
diffusion among the audience and voluntary transmission by sender as some of the important benefits of viral marketing.
The dynamics of VM campaign spread are much similar to that of infectious disease, as they have a contagious quality,
being beneficial for the existing consumers and propagating via social interaction. Prominent companies like Amazon,
Google and Hotmail have succeeded with virtually no marketing, based solely on consumer-driven communications [10].
In similar fashion, established organizations such as Procter & Gamble, Microsoft, BMW and Samsung have successfully
used VM, through which the intact marketing message spreads across the market rapidly, imitating an epidemic [11].

Epidemic models [12] are widely used in different fields of science to study the behavior of different classes of popula-
tion interacting with each other through a diffusion phenomena [13–16]. These models are commonly based on the idea
of contagion through the interaction between people, where the total population is assumed to be compartmentalized.
Building differential equations that describe the rate of change in the population class or compartment, these models
operate on laws outlined by these equations. The underlying assumptions are that the population is homogeneous, people
have a constant contact rate and diseases have a unique transmission rate. The SIR model [12], a well-known epidemic
model, has three compartments of susceptible, infected, and recovered, and illustrates changes of three compartments
using differential equations. Borrowing the concepts from epidemiology, several mathematical models have been proposed
by the researchers where spreading is guided by one or more inter-class interactions which could be linear or nonlinear in
nature, while a disease, message, habit, addiction, or opinion propagates throughout the population [17–20]. Here we must
mention that though compartmental modeling using differential equations is widely used to understand the dynamics of
disease spreading, spread of opinion emerges from a complex interplay of information diffusion, individual perception
and peer influences. A popular approach to analyze opinion spread follows agent-based modeling (AM). AM also relies
on the law of mass action like compartmental modeling [21,22], however it removes the concept of homogeneity that is
usually adopted in compartmental disease spreading models. Though, in AM, we can observe the individual status of each
participant in a community, being mathematically tractable and computationally inexpensive, compartmental epidemic
models have undeniable role in understanding various spreading dynamics. Goffman and Newill [23] carried out the first
study on information diffusion using epidemic models by considering the spread of scientific ideas. Based on their work,
recently Bettencourt et al. [24,25] further proposed a competency model where two theories simultaneously compete and
diffuse in a population. Epidemic models were also tested in diverse problems such as rumor propagation dynamics [26],
development of consumer sentiment about economy [27] and prediction of stock buying and selling determinants [28].

While epidemic models, when considered as multivariate differential equations, have a simple treatment with profound
understanding, we also have to consider that society has a heterogeneous structure. For this reason, understanding
diffusion dynamics is important both from mean-field as well as network perspective. Considering social structures and
individuality of the members of a population, a more realistic study can be done using network-based models. In a
network model we consider the contact network of individuals inside a population through which diffusion happens and
we focus on the effects of network properties in the diffusion process. Barabási and Albert [29] illustrated that diffusion
studies using epidemiology models can be successful even on real-world networks, taking certain topological features
into account. Independent cascade model (ICM) [30] is a special case of the SIR model which integrates the network
structure of the population into the study. A complete digital record of sharing and receiving information from online
social networking sites like MySpace, Instagram, Facebook and Twitter have provided a chance to examine the information
diffusion in online social media. Utilizing this, Bampo et al. [31] applied the SIR model to various networks to measure
the efficiency of email marketing campaigns. In another study with similar motivation, Toole et al. [32] proposed a model
to include the effect of geographical and media influences on the adoption of Twitter, by implementing the susceptible–
infected–susceptible (SIS) framework. Jalali et al. [33] presented a dynamic model to quantify the core mechanisms of
petition diffusion including invitation, interest, awareness, forgetting, sharing and reminding.

All these works establish the importance of including these realistic factors for modeling a real dataset. On the other
hand, the more detailed models sometimes become more complex for deeper understanding and application. In this paper,
we explore the phenomena of viral marketing from the perspective of effectiveness as well as sustainability, with the help
of epidemiological models. While creating a viral ad campaign is a cost effective and fast way to spread the word, in todays’
vigorously active social media, there is huge chance of an ad campaign becoming incredibly short-lived. As several recent
surveys clearly point out that Internet Word-of-mouth tool is the key to marketing in today’s world [34], the importance
of quantitative analysis in understanding VM dynamics is becoming undeniable. Majority of studies in this field propose
a conceptual framework, completely ignoring the mathematical treatment. A major step forward was the mathematical
model for VM dynamics developed by Rodrigues et al. [11], where they attempted to capture the epidemiological aspects
and consumer behavior into diffusion dynamics study. However, this treatment could not include some important and
evident interactions, which are crucial for dealing with real world scenarios. In this paper, we propose a mathematical
model which is rooted in data collected through an extensive questionnaire-based-survey [35], which was aimed towards
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Fig. 1. Block diagram of the proposed model showing all possible transitions from one state to other.

understanding the customer motivation and actual dynamics of VM campaigns. Considering the inputs from real world
customers, we build a model resting on the key features observed from the survey outcomes. The precise objective is
twofold: first, we consider the case of VM campaign propagation in a population, and propose a simple as well as realistic
3-variable model that shows bistable characteristic. Bistability is an important phenomena having deep implications for
the diffusion models where it appears, in the steady state, the number of people in a sub-population can be different
depending on the initial state or history of the system. While there could be several contextual as well as creative aspects
which can ensure the viral spread of a campaign, we show that some dynamical factors, which are closely entangled with
the customer behavior, have major impact on the survival issue. Next, we consider the heterogeneous structure of the
society and incorporate the propagation through a network. We compute and simulate for random as well as scale-free
networks, and compare the result with real-world social networks. We also demonstrate that strength of the positive
feedback in the model is one of the major reasons for bistable behavior of the system which protects the advertisement
campaign from a premature death.

2. Proposed model and mean-field analysis

In the mean-field approach, we compartmentalize the total population (T ) and associate each individual to one of three
mutually-exclusive subpopulations: Unaware (U), Broadcaster (B) and Inert (I). This approach has been adopted before for
epidemiological modeling [11] as well as network-level treatment [31] of email-based advertisement campaigns. These
behavioral transitions between the mutually-exclusive compartments are driven by several guiding factors, which set up
the rules for the model. To understand this dynamics in a population and to understand consumer psychology towards
VM campaigns, we did an extensive survey-based study in a recent work [35]. Fig. 7(b) and Table 1 of [35] summarizes
the findings of that survey in the form of a theoretical framework. There we observed that there are several inter-
dependent and independent factors that play major roles in customer’s approach towards a VM campaign. As discussed
in Sec. 5 of [35], reasons like amount of rewards, recent trends and association with a brand name etc., motivate people
to participate actively in a viral campaigning. However, even after knowing about an offer, sometimes people do not
participate in it for several reasons like security, forgetting, adverse past experience etc. The survey also shows that proof
of genuineness of the campaign and friendly reminders can engage the noncontributing subpopulations in the diffusion
of the viral offer. Taking these aspects into consideration, and also assuming homogeneous mixing i.e., overlooking the
spatial structure within the population, we describe the system as follows.

2.1. Model formulation

The scheme of the model is illustrated in Fig. 1. The unaware class, denoted by U, is yet to receive the message; these
are susceptible people or the target market, who may receive an advertising message containing marketing offers. The
broadcaster class B consists of individuals who came to know about the message and have the potential to forward the
message further in the population. If a member in this class decides to participate in the campaigning, (s)he spreads and
transmits the message in the entire population by recommending it through their social contacts. We assume that ρ is the
rate at which a broadcaster comes in contact with a member from unaware class, and share the viral message to create
new potential broadcasters. Finally, there is the inert class I, who used to be in broadcaster class B, but is not sharing the
message at present. There are two major ways into the inert class: first, people who used to broadcast the viral message
can lose interest and come to inert class due to several factors like, getting annoyed (due to low profit-to-effort ratio),
bored or suddenly doubtful (about security). On the other hand, some people, who were in the B class and had the option
to share the viral message, may directly come in the inert class without sharing the message even once. The factors that
can influence this event are forgetting, diversion, safety concerns, insecurity about hidden clauses etc. Effects of these
factors are combined in the parameter σ of the model.

Interestingly, in [35] we found that there are always chances that the inert may regain their interest depending on the
reasons that brought them to the inert class I in the first place. With 331 participants sharing their opinions through both
polar as well as qualitative answers in that survey, we specifically focus on the two kinds of people who transit from B to I
class to get a clear idea of what makes them gain their interest back in the campaign. The first kind who had left the B class
by getting bored or annoyed, more than 92% of them agreed that an authentic information or a genuine news related to a
considerable gain from the same campaign might make them motivated to return to active participation [35]. In contrast,
the other subgroup, where people might have switched to the inert class shortly after getting the viral message, had an
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initial interest about the offer. The driving causes for them are entirely different, like, forgetting or attention diversion.
These people, who often feel that they missed the offer (almost 76%), continue to be submissively interested about the
advertisement campaign. A timely reminder by someone or strategically designed retargeting emails from the company
can influence them straightaway to gain their active state back, and they start contributing in the propagation of the
campaign again. It has been also seen that coming across frequent discussions about a product or campaign (commonly
referred as buzz) can tempt the inerts to become a broadcaster again. All these possible transitions from I to B have been
included in our model by allowing a feedback from inert class to broadcaster with a relapse rate α.

In practical scenarios, people enter and leave the population. To include this factor, we have introduced birth
and death in our model. Both birth and death rates are kept equal to µ, so that a fixed population size can be
maintained [11,16,21,22,27,31]. For a particular VM dynamics, birth and death can be viewed as events when people
join or leave a particular social platform where the campaign is going on. Considering u, b and i to be the fraction of
unaware, broadcaster and inert classes normalized by the total population T , the VM dynamics in the population with
the mentioned interactions is governed by the following differential equations:

u′
= µ − ρbu − µu

b′
= ρbu − σb − µb + αbi (1)

i′ = σb − αbi − µi

Here and at all subsequent places, u′ and all such terms denote the rate of change with time.

2.2. Equilibrium analysis

At equilibrium there is no time evolution of the system model defined in Eq. (1) and the rate of change of u, b and i
become zero. The system of equations always has a VM-free equilibrium E0, at which the whole population is unaware.
Also, the system exhibits an Endemic equilibrium E⋆ with a finite percentage becoming broadcasters. By setting the u′, b′

and i′ of Eq. (1) to zero, all the components of E⋆ can be evaluated.

2.2.1. Stability
It is necessary to find out the stability of the equilibria to interpret the dynamics of the system. Linear stability analysis

is a straight forward way for classifying equilibrium points under small perturbation. Let us consider a set of ordinary
differential equations, ẋ = f(x) with an equilibrium point x⋆. We can linearize the equation by Taylor series expansion
around the equilibrium as,

f(x) = f(x⋆) +
∂f
∂x

⏐⏐⏐
x⋆
(x − x⋆) (2)

On the other hand, we can consider a small perturbation δx from the steady state by letting, x = x⋆
+δx. In this condition,

the question of stability translates into the eventual decay (or growth) of δx, so that x comes back to (or moves away
from) the steady state x⋆, by deciding it to be a stable (or unstable) solution. So, to study the behavior of δx with time,
we take a time derivative, to find that,

δẋ = ẋ = f(x), (3)

as x⋆ is a constant. Drawing the equivalence between Eqs. (2) and (3) as both express a form of f(x), we write,

δẋ = J⋆δx, (4)

where J⋆ is the Jacobian evaluated at the equilibrium. For that equilibrium x⋆ to be stable, all the eigenvalues of J⋆ have
negative real part. For a system of N ordinary differential equations, where N variables are coupled with each other, the
components of state vector x are [x1, x2, x3..., xN ] and the components of rate vector f are [f1, f2, f3,..., fN ]; in this case, the
Jacobian is

J⋆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

. . .
∂ f1
∂xN

∂ f2
∂x1

∂ f2
∂x2

. . .
∂ f2
∂xN

. . . . . . . . .

∂ fN
∂x1

∂ fN
∂x2

. . .
∂ fN
∂xN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)
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evaluated at [x⋆
1, x

⋆
2, x

⋆
3, . . . , x

⋆
N ]. For analyzing the stability of the fixed points of our model we have,

f1 = µ − ρbu − µu
f2 = ρbu − σb − µb + αbi (6)
f3 = σb − αbi − µi

We obtain J⋆ using Eq. (5) for all the steady states to analyze the eigenvalues and determine the stability of the steady
states.

2.2.2. Bifurcation
While solving for E⋆, the first equation of system model, defined in Eq. (1), gives

u⋆
=

µ

ρb⋆ + µ
(7)

Relevant substitutions from Eq. (7) and replacing i⋆ by (1 − b⋆
− u⋆), simple algebra results into p(b⋆)2 + qb⋆

+ r = 0,
where

p = αρ; q = (σρ + µρ + αµ − αρ); r = µ(σ + µ − ρ) (8)

Examining the coefficients, we conclude that p is always positive; q is positive for small values of α, and r is positive or
negative depending on whether ρ

σ+µ
= R is smaller or greater than 1. Two utterly different steady state scenarios can

arise:
Case 1: For negative r (i.e., R > 1), the quadratic equation has a unique positive solution b⋆

+
, as another solution b⋆

−
is

always negative and so, unphysical, and there exists a unique endemic equilibrium E⋆ whenever R > 1.
Case 2: On the other hand, for positive r (i.e., R < 1), the number of physical roots of the equation depends on the sign of
q, and therefore, the nonlinear relapse parameter α. Depending on this fact if α is high (or low), multiple (or no) endemic
equilibria may exist.

To understand the phenomenon, we observe the steady states of the model for two different α values fixing µ = 0.05
and σ = 0.2 in Fig. 2. A forward transcritical bifurcation is observed in Fig. 2(a), indicating the existence of only the
message-free solution before R = 1. On the other hand, a backward bifurcation occurs for high α values as shown in
Fig. 2(b). In this case, for the parameter regime where R ∈ [Rc, 1), there exists a choice for the system between two
distinctly different responses. This regime is known as region of bistability where both the endemic and the message-free
solutions can be achieved by the system depending upon the initial conditions. This history dependence is commonly
known as hysteresis, drawing an analogy from the ferromagnetic systems. This phenomena of bistability gives the system
a sustainability, so that, once a transition occurs from the message-free state to the endemic state, the nonlinearity of the
dynamics inherently opposes any switch-back driven by the immediate fluctuations of the parameters; the whole system
works as a very robust switch. Thus, it can be concluded that high value of nonlinear relapse rate α makes it difficult to
eradicate the message from the system; the message-epidemic will be present for a broad parameter regime, even when
R < 1. The condition for existence of this bistable region will be discussed in Section 2.4.

2.3. Reproduction number

It is evident that the quantity R, is dictating the basic behavior (message-free or endemic) of the system. The concept
could be understood more clearly just from the structure of the model. Here, R is analogous to the basic reproduction
number defined for SIR model, which is average number of broadcasters a single broadcaster can create in its lifetime
without considering its interaction with inert class (which makes α irrelevant for this estimation). The rate at which a
broadcaster will interact with unaware is ρ. A broadcasters’ lifetime can have two components: µ, for natural death rate
and σ , for death-like conversion to inert class. So, the average lifetime will be 1

µ+σ
and the average number of other

broadcasters created in this lifetime will be ρ

µ+σ
.

2.4. Conditions for bistability

To ensure bistability, the necessary conditions are q < 0 and q2 − 4pr > 0 where, p, q, r are given by Eq. (8). We
can figure out the limiting condition for bistability from these relations. The nonlinear relapse rate, α causes the drastic
change in the behavior of the system, though it does not appear in the expression of R . By equating q = 0, we can figure
out the minimum threshold for α as:

αth =
ρ(σ + µ)
ρ − µ

(9)

For a given set of parameters, iff α > αth, then bistable solutions can be expected. Once we satisfy the condition for α, it
should be noted that both the endemic states can exist (i.e., have real roots) only if q2 −4pr > 0. The region of bistability
extends for a range of R values, from Rc to 1, as mentioned before. For R < Rc neither of the endemic solutions are
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Fig. 2. Variation in steady state fraction of b with reproduction number R for (a) α = 0.1, when only a single epidemic state persists beyond R = 1
and for (b) α = 1, when bistability can be observed in range Rc to 1. In these figure, orange (and continuous) lines indicate stable solutions and
purple (and dashed) lines indicate unstable solutions. For these parameter values, we calculated Rc = 0.562 from Eq. (10). (c) Phase diagram of the
model in α − R space for σ = 0.2 and µ = 0.05. The blue line indicates Rc , purple dashed line indicates αth and red line indicates R = 1. The
region filled with orange color always exhibits monostable endemic state as R > 1, the gray region exhibits monostable VM free state as α < αth .
For both the white region and green region, α ≥ αth . For the white region, R < Rc and the region contains monostable VM free state. However
for the green region, α > αth , R > Rc and R < 1. Thus, this area exhibits bistability, where either VM free state or the endemic state is chosen by
the system depending upon the initial state.

feasible and the only steady state is message-free. Rc , or the critical threshold for bistability can be evaluated by equating,
q2 − 4pr to zero. With algebraic manipulations, we can show that

Rc =
1

(σ + µ)
αµ

(α + µ + σ − 2
√

σα)
(10)

Eqs. (9) and (10) provide us with two limits for ensuring the bistable dynamics of the system.
From our previous discussions, it is evident that depending upon the two key parameters of the model, R and α, only

endemic, only VM free or both solutions can be obtained. To illustrate this idea, we explored the phase diagram of the
system in α −R space in Fig. 2(c). The only region where bistable dynamics can be observed is shaded in green, bounded
by the R = 1, Eqs. (9) and (10). Fig. 2(a)(and (b)) can be obtained by tracking the system behavior while moving across
the phase space through a vertical line α = 0.1 (and α = 1). We note that region of bistability increases gradually as the
value of α increases. This shows that high values of the relapse rate ensure the survival of the campaign in steady state.
From the phase diagram, it can also be noted that without the relapse (i.e., α = 0), no bistability is possible.

3. Graph-theoretical analysis

In contrast to mean-field approach, diffusion in networks will be dependent on the degree distribution of the network.
We denote with uk, bk and ik the fraction of unaware, broadcaster and inert nodes with degree k. Equations now modifies
to:

u′

k = µ − βkukb − µuk

b′

k = βkukb + γ kikb − (σ + µ)bk (11)
i′k = σbk − γ kikb − µik

We are considering β to be the rate at which a broadcaster spreads the information to an unaware neighbor. Similarly,
γ is the relapse rate influenced by the neighbors. In these equations we have assumed that the fraction of broadcasters
around a node of degree k is independent of k. But, in a real network this is not the case. Θkb is the density function
which gives probability of broadcasters around a node of degree k. In uncorrelated network Θkb is independent of k and
is given by

Θb =

∑
k

kpkbk
⟨k⟩

(12)
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Substituting Θb in Eq. (11), we get

u′

k = µ − βkukΘb − µuk

b′

k = βkukΘb + γ kikΘb − (σ + µ)bk (13)
i′k = σbk − γ kikΘb − µik

Multiplying all these three equations by kpk
⟨k⟩ and then performing summation over k, we get

Θ ′

u =

∑
k

kpk
⟨k⟩

µ − β
∑
k

k2pk
⟨k⟩

ukΘb − µ
∑
k

kpk
⟨k⟩

uk

Θ ′

b = β
∑
k

k2pk
⟨k⟩

ukΘb + γ
∑
k

k2pk
⟨k⟩

ikΘb − (σ + µ)
∑
k

kpk
⟨k⟩

bk (14)

Θ ′

i = σ
∑
k

kpk
⟨k⟩

bk − γ
∑
k

k2pk
⟨k⟩

ikΘb − µ
∑
k

kpk
⟨k⟩

ik

3.1. Propagation at initial state

In initial phase of message spreading [36], b and i can be approximated by zero and u by 1. Using these values in
nonlinear terms so that they can be simplified to linear equation, we get

Θ ′

u = µ − β

⟨
k2

⟩
⟨k⟩

Θb − µΘu

Θ ′

b = β

⟨
k2

⟩
⟨k⟩

Θb − (σ + µ)Θb (15)

Θ ′

i = σΘb − µΘi

Integrating second equation of the above system and using b0 as initial value of Θb, we get Θb = b0e
t
τb where

τb =
⟨k⟩

β
⟨
k2

⟩
− (σ + µ) ⟨k⟩

(16)

Putting value of Θb in third equation of the system and using i0 as initial value of Θi, we get Θi = C1e
t
τb +C2e

−
t
τi , where

C1 = στbb0; C2 = στbb0 − i0; τi =
1
µ

(17)

Similarly first equation of the system with u0 as initial value of Θu gives Θu = µt + C3e
t
τb + C4e

−t
τu , where

C3 = −β

⟨
k2

⟩
⟨k⟩

τbb0; C4 = u0 + β

⟨
k2

⟩
⟨k⟩

τbb0; τu =
1
µ

(18)

For epidemic to spread, τb must be positive. This condition gives a relation between epidemic and network parameters
to ensure epidemic i.e.,

β

σ + µ
>

⟨k⟩⟨
k2

⟩ (19)

Expression on left hand side of the equation is similar to that of the Reproduction number of the mean-field treatment.
For Erdös–Rényi Random Network [37],

⟨
k2

⟩
= ⟨k⟩ (⟨k⟩+ 1) and hence threshold is 1

⟨k⟩+1 which decreases with increase in

average degree. For scale-free network with degree exponent in the range (2,3]
⟨
k2

⟩
diverges which leads to absence of

epidemic threshold [38,39].

3.2. Steady state network analysis

In large time limit, system will reach steady state. Rate of change of fractions u, b and i will be zero. In case of degree
based compartment scheme, uk, bk and ik will not change. Equating all three system evolution equations (Eq. (13)) to zero,
we have

bk =
βkΘb(µ + γ kΘb)

(µ + βkΘb)(γ kΘb + σ + µ)
(20)
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Fig. 3. Numerical simulation of convergence to the steady state for different initial conditions, for (a) deterministic mean-field system with single
endemic steady state for µ = 0.05, σ= 0.1, ρ = 0.25 and α = 0.4; (b) Deterministic mean-field system with bistable dynamics for µ = 0.05, σ =

0.15, ρ = 0.15 and α = 0.75; Temporal variation of u and b with different initial conditions for equivalent parameter regime as (b) in (c) random
network and (d) scale-free network. To ensure the equivalence with the mean-field analysis, the infection rate and the relapse rate for network
dynamics are taken as ρ/⟨k⟩ and α/⟨k⟩ respectively.

Multiplying bk by kpk
⟨k⟩ and performing summation over k we get

Θb =
1

⟨k⟩

∑
k

pkk2βΘb(µ + γ kΘb)
(µ + βkΘb)(σ + µ + γ kΘb)

(21)

This is a self consistency equation where Θb = f (Θb). At Θb = 0; f (Θb) is also zero. Hence Θb = 0 is a solution of the
equation. Value of the function at Θb = 1 is

f (1) =
1

⟨k⟩

∑
k

pkk
(1 +

µ

βk )(1 +
σ

µ+γ k )
(22)

It is clear from the above expression that f (1) < 1. To have another solution in the interval 0 to 1, slope of the function
at Θb = 0 must be greater than 1.

df (Θb)
dΘb

⏐⏐⏐
(Θb=0)

=
1

⟨k⟩

∑
k

pkk2β
(σ + µ)

=
β

(σ + µ)

⟨
k2

⟩
⟨k⟩

≥ 1

which is the same condition we had from linear approximation in initial phase of the epidemic.

4. Numerical results

Simulations for both the approaches, mean-field analysis and network analysis have been carried out on MATLAB. To
understand the effect of population heterogeneity and network topology, random, scale-free and real social networks have
been considered in our simulations.

4.1. Simulation of the deterministic model

As discussed in Section 2.4, system may lead to any one of three possible steady state situations: when only message-
free state exists; when only an endemic state exists; when an endemic as well as a message-free state can exist depending
on initial population of different classes. We have shown both the cases where at least one of the steady state is endemic,
in Fig. 3(a)–(b) with their respective parameter values.
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Fig. 4. (a) Fraction of u, b and i in the neighborhood of a node with degree k in random network; (b) uk , bk and ik with respect to k at steady-state
in random network; (c) Fraction of u, b and i in the neighborhood of a node with degree k in scale-free network; (d) uk , bk and ik with respect to
k at steady-state in scale-free network.

Fig. 5. Physical topologies of real networks used in our work.

4.2. Simulation over model networks

Same set of parameters have been used to compare the results of deterministic mean-field model with network model.
We have carried out our simulation over random network and scale-free network having 1024 nodes and average degree
10. Random network has been created by Erdös–Rényi model and follows binomial degree distribution which converges
to Poisson distribution for very large number of nodes (infinite network). Scale-free network has been generated by
Barabási–Albert preferential attachment model [29] and follows power law degree distribution having power exponent
3.

In case of random network, we obtained similar results as predicted by deterministic model. Using the values of
bistable steady state configuration of Fig. 3(b), we similarly observed two stable states in Fig. 3(c), one endemic and
one message-free. Steady state value obtained by the simulation is also in agreement with the mean-field approach.
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Table 1
Important characteristics of different network.
Network characteristics Hamster network Email network Jazz network

Number of nodes 2426 1133 198
Number of edges 16631 5451 2742
Average degree 13.71 9.624 27.7
Maximum degree 273 71 100
Power law exponent 2.46 6.77 5.27

In case of scale-free network, endemic steady state values are not exactly same. In considered set of parameters, there
is maximum 4% error in steady state fraction of different classes. This error is due to non-homogeneity present in scale-
free network in form of hubs. Second point of difference is that message-free state never appears in scale-free network.
The fact is in alignment with our analytic result regarding absence of epidemic threshold in scale-free network. It can be
observed in Fig. 3(d) where temporal variation of u and b leads to endemic steady state in every set of initial conditions,
in contrast with random network scenario of Fig. 3(c), where we can see few flows terminating at message-free steady
state.

To understand the dynamics of nodes of different degree, we have plotted steady state value of u, b and i in their
neighborhood. As shown in Fig. 4(a), for random network, these fractions are independent of degree of nodes. Hence, the
number of broadcasters around a higher degree node is large as compared to a lower degree node which makes themmore
prone to receive the message. It is evident from Fig. 4(b) where fraction of broadcasters is shown to be monotonically
increasing with degree. Even in scale-free network, bk increases with degree k as shown in Fig. 4(d). But, in Fig. 4(c)
fraction of broadcasters around any node is more than fraction of unawares which is entirely opposite to the random
network case shown in Fig. 4(a). This outcome is result of these two features of scale-free network: (i) chances of higher
degree nodes (hubs) getting infected is very high as shown in Fig. 4(c) and (ii) same hubs are present in neighborhood
of multiple nodes while counting broadcasters around a node. This redundancy leads to increment in local fraction of
broadcasters in neighborhood of a node.

4.3. Simulation over real networks

Though Figs. 3 and 4 indicate that the information diffusion in the proposed model follow the dynamics as discussed
in Sections 2 and 3, it is important to analyze the model over real world networks as most of these networks do not
follow the typical characteristics of any particular model network. Thus, we have studied the proposed viral marketing
model over some real networks collected from KONECT database [40], to understand its behavior in real social interactions
scenarios.

The networks that we have used for testing our VM models are referred as Hamster network, Email network and
Jazz network in the rest of the paper. The first real network that we considered is the friendship network of website
www.hamsterster.com that has 2426 users (nodes) with 16,631 friendships edges. The second one, the Arena email
network has been collected from University Rovira i Virgili of Spain. The network has 1133 users (nodes) with 5451
connections (edges). The third one, referred as the Jazz network, is the collaboration network between jazz musician that
can be visualized as a network of people with common interest or skill. The jazz network has 198 musicians (nodes)
with 2742 collaborations (edges). In Fig. 5 we show the topologies of the real networks used in this work. The network
parameters for the real networks that are considered in this paper are summarized in Table 1.

We study the flow of a viral message in all three real networks mentioned above. As email network has almost same
number of nodes as the model networks considered in our simulations, we show the time evolution of email network for
different parameters and initializations in Fig. 6 as the message diffuses. In Fig. 6(a), we set the parameters equivalent
to Fig. 2(a) along with R = 0.64, which gives only VM-free state in mean field analysis. For all different initializations,
we get a complete broadcaster-free state in the email network as well. To analyze bistability, we set the parameters
equivalent to Fig. 2(b) with R = 0.64, which belongs to a bistable region in deterministic case. To locate the lower
branch, we generated five different realizations of simulations for 104 time units, and results were obtained where 2% of
the nodes were broadcasters initially. If the infected fraction went to zero in any of the five runs, the message-free state
was considered stable [41]. Simulation results show that the email network exhibits VM-free state when the number
of broadcasters is low initially. To locate the upper branch, the system was run to steady state where initially 70% of
the total population were acting as broadcaster and none were in inert state in each network. For each run, we studied
the system for 104 time units and then averaged over 200 samples. Like the deterministic model, with high number of
broadcasters initially, the email network also shows endemic state. We show the steady states of the email network for
both the initializations in Fig. 6(b) and (c) respectively; different final states for different initial conditions demonstrates
the existence of hysteresis. It is also noted that for all different networks, systems’ propensity for the endemic state starts
to dominate as R goes beyond Rc , for a specific parameter set. As Rc is always less than 1, even in real networks we
acquire a state of endemic for R < 1, where the message is being spread throughout the population. The final steady state
conditions for the real networks are compared in Table 2 for R = 0.64 with 70% broadcasters initially and parameters
equivalent to Fig. 2(b). It shows that 30%–35% of the population belong to the broadcaster class, ensuring the survival of
the advertisement campaign in steady state, even when R < 1.

http://www.hamsterster.com
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Fig. 6. Time evolution of email network for R = 0.64: (a) when the network parameters are equivalent to Fig. 2(a); steady state is completely free
of broadcasters. (b) When the network parameters are equivalent to Fig. 2(b), which satisfies Rc < R < 1 with 70% broadcasters initially; steady
state is endemic, having 30% broadcasters. (c) When the network parameters are equivalent to Fig. 2(b) but with 2% broadcasters initially; steady
state is completely free of broadcasters. (d) When the network parameters are equivalent to Fig. 2(b) but for R = 1.4, that satisfies R > 1 with 2%
broadcasters initially; steady state is endemic. green, red and white colors represent unaware, broadcaster and inert nodes respectively. Please refer
to the online version of the paper at maximum zoom to fully appreciate the results.

Table 2
Comparison of viral message diffusion in different networks for R = 0.64.
Steady state fraction Random network Scale-free network Hamster network Email network Jazz network

u∗ 0.54 0.49 0.59 0.53 0.50
b∗ 0.32 0.37 0.31 0.35 0.37
i∗ 0.14 0.14 0.1 0.12 0.13
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5. Conclusion

Marketing is always considered as one of the key components, not an auxiliary arrangement, for a successful
business [42]. Surely, a viral marketing campaign works as a less expensive and unexpected way to reach the customers;
but nowadays, when almost 85 million videos and photos get uploaded every day in a popular social networking website
like Instagram [43], the main challenge is making that advertisement execute long lasting iterations in the population,
so that it can reach a bigger audience. If we consider just the case of Instagram, when almost 500,000 advertisers are
using this popular website for campaigning [44], most of the uploads get tossed like a needle in a haystack. The model
we propose in this paper establishes a principle of sustainability for online advertisement campaigns by developing a
model relying on rigorous consumer psychology survey data [35]. Extensive analysis with mean-field equations as well
as networks simulations shows that the region of bistability grows as the value of α, the nonlinear relapse rate increases.
Bistability gives the system a chance to retain its viral state for adverse parametric conditions as well. While we have
observed that the steady states of diffusion in networks are closely related to mean-field system dynamics, we also
appreciated the importance of network structures in this issue. Not only on model systems, but in real social networks,
with consideration of all heterogeneity that exists in a population, it has been shown that sustainability of a viral campaign
is actually dependent on drawing the attention of those who are not participating in spite of being aware of the campaign.
If a certain percentage of this inert population start broadcasting in favor of the campaign, it retains its endemic state in
the entire population.

It is to be noted that for a more realistic modeling of the dynamics, the birth and death rates could be considered
different, i.e., we can assume that people enter and leave the population in different rates. Considering that in a social
media platform, new people migrate in at a much faster rate than the rate at which people leave the platform, it might be
assumed that the birth rate of unaware people is µ while the death rate for them is µ1 (< µ). Death rate for broadcasters,
as they are more active in the media platform, could be taken as much smaller than µ (we can call it µ2), while the rate
at which inerts leave the population could be a bit more than µ, which could be taken as µ3. A model considering that
will have a variable population instead of a fixed one. We tested our model results with a typical set of parameters
maintaining the above logical relation, with µ = 0.05, µ1 = 0.03, µ2 = 0.005 and µ3 = 0.07. With the other parameters
unchanged, the equilibrium analysis shows no qualitatively different results; bistable (for α = 1) as well as monostable
(for α = 0.1) dynamics were observed for higher and lower values of α respectively, but the mathematical handling
becomes complicated.

The model presented in this paper is the first to include a relapse rate while analyzing epidemic spread and
sustainability of viral marketing messages. The remarkable effect that this relapse rate has on the sustainability of the
campaign has deeper marketer-level implications. Through last couple of years advertisers have slowly understood the
importance of capturing the attention of lost customers. We are already familiar with Facebook retargeting for products,
where by adding a code snippet (often called a pixel), the online websites retarget attention of the customers, whom they
lost from their website due to unknown reasons [45]. Firms are becoming quite inclined to get the services of companies
like Adroll, Retargeter, Perfect Audience, etc. or going directly to the exchanges like Google, Facebook, Twitter [46]
for running their own retargeting campaigns to re-engage anonymous users. But recent studies show that continuous
retargeting leads to a definite privacy concern and skepticism among customers, which results into a lower purchase
intention [47]. Our findings in this paper points out the relapse can cause a major effect, especially if a social-circle-level
remarketing technique can be devised where factors like authenticity and security will be highlighted. The campaigns
should adopt clear privacy policies about protection of consumer data, as well as consider adding a social context
to encourage spontaneous reminders among the population. As friends and peers have a substantial influence, close
proximity and often share similar interest, it is both more plausible and effective, if they assure the lost customers about
the genuineness and usefulness of a campaign. To address this peer effect, in a future project, it will be valuable to know
the existence and nature of steady states in adaptive as well as weighted networks. Different rules of adaptation can be
employed to understand the behavior of diffusion in more realistic scenarios.
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